User Interface Document

VERSION 7.1

For Use With Compass Serial Numbers F and higher

31 AUGUST 2009

130-5382 Rev J
TABLE OF CONTENTS

- **INTRODUCTION** .. 6

- **SPECIFICATIONS** .. 10
 - Mechanical .. 10
 - Environmental ... 10
 - Bearing .. 10
 - X-Y-Z Acceleration ... 10
 - Magnetics ... 11
 - Electrical ... 11
 - Digital Interface ... 11
 - Connector 1 Definitions .. 12
 - Connector 2 Definitions .. 13

- **MECHANICAL INTERFACE** .. 14

- **HEADING IDENTIFICATION – HORIZONTAL MOUNTING (DEFAULT)** 17

- **HEADING IDENTIFICATION – VERTICAL MOUNTING** ... 18

- **DIGITAL COMPASS MOUNTING** .. 19

- **COMPASS INSTALLATION CONSIDERATIONS** ... 20

- **COMPASS OPERATIONAL CONSIDERATION** ... 20

- **ENCAPSULANT PROPERTIES** .. 21
 - Description .. 21
 - Key Features .. 21
 - Material Properties ... 21

- **APPLICATION INFORMATION** .. 22
 - Serial Peripheral Interface (SPI) .. 22
 - Universal Asynchronous Receiver Transmitter (UART) ... 23
 - JTAG Interface ... 23
 - Native Serial Command Definitions .. 24
 - Raw Magnetics ... 25
 - Heading - TRUE .. 25
 - Heading - Magnetic ... 25
 - Magnetic variation ... 26
 - Automatic Magnetic Variation (SP3003D & SP3004D ONLY) ... 26
 - Latitude (SP3003D & SP3004D ONLY) ... 26
 - Longitude (SP3003D & SP3004D ONLY) ... 27
 - Altitude (SP3003D & SP3004D ONLY) .. 27
 - Day (SP3003D & SP3004D ONLY) ... 27
 - Magnetic Vector ... 28
 - Magnetic calibration .. 28
 - Magnetic Adaption Error ... 29

130-5382 Rev J
Raw Acceleration

- Pitch and Roll Output
- Acceleration Vector
- user selectable digital Filter
- Temperature
- BAUD RATE (SP3002D & SP3004D only)
- Read Analog Input
- Set Digital I/O Direction
- Read Digital Input
- Set Digital Output
- Mounting Configuration

NMEA Serial Command Definitions

- Raw Magnetics
- Heading - Magnetic
- Heading - TRUE
- Magnetic Variation
- Automatic Magnetic Variation (SP3003D & SP3004D only)
- Magnetic Vector
- Magnetic calibration
- Magnetic Adaption Error
- Raw Acceleration
- user selectable digital Filter
- Temperature
- BAUD RATE (SP3002D & SP3004D Only)
- Read Analog Input
- Set Digital I/O Direction
- Read Digital Input
- Set Digital Output
- Mounting Configuration
- Read Transducers

DEVELOPMENT KIT

- Hardware Setup
- Software Installation
- Software Operation
- Cockpit Display Mode
- Development Kit PCB Interface

MAGNETIC MODEL SOFTWARE UPDATES

- Software Installation
- Hardware Setup
- Software Operation

ORDERING INFORMATION

- WARRANTY
REVISION HISTORY

<table>
<thead>
<tr>
<th>REV</th>
<th>CHANGE NO.</th>
<th>DATE OF CHANGE</th>
<th>DESCRIPTION OF CHANGE</th>
<th>INITIALS AND DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>N/A</td>
<td>7/01/08</td>
<td>ORIGINAL RELEASE FOR SP3004D</td>
<td>KG 7/01/08</td>
</tr>
<tr>
<td>6.0</td>
<td>N/A</td>
<td>9/26/08</td>
<td>ADDED SP3002D DIGITAL COMPASS INFO.</td>
<td>KG 9/26/08</td>
</tr>
<tr>
<td>7.0</td>
<td>N/A</td>
<td>8/31/09</td>
<td>CHANGED PHONE NUMBER FOR ORDERING</td>
<td>TV 8/31/09</td>
</tr>
<tr>
<td>7.1</td>
<td>N/A</td>
<td>2/23/10</td>
<td>TO CLARIFY CONNECTOR DETAILS</td>
<td>TV 2/23/10</td>
</tr>
</tbody>
</table>
SP3003D Digital Compass

SP3004D Digital Compass

SP3002D Digital Compass

SP3004D Digital Compass with Development Kit
INTRODUCTION

The Sparton digital compass provides superior performance and flexibility. Using advanced hardware and software, the Sparton digital compass offers an impressive list of features at an affordable price. It is the Worlds only low-cost digital compass that provides adaptive in-field calibration. The SP3004D has been designed as a drop in replacement for our previous compasses and can be integrated into any system using a UART or SPI interface. Sparton also offers product development and integration, DFM, DFA and production services.

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>SP3002D</th>
<th>SP3003D</th>
<th>SP3004D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilt Compensated Heading</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adaptive 3D Calibration</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Full 360° Rollover Capability</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>True North Computation(^1)</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Motion Stabilization</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>User Selectable Digital Filter</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dynamic Filter</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pitch and Roll</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3D Magnetic Field (milligauss)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3D Acceleration (milli-g)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Horizontal or Vertical Mounting</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SPI Communications</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>UART communications</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Analog Inputs</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Digital Inputs/Outputs</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2D Calibration</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Selectable Baud Rate</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Dynamic Filter Disable</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>High Resolution Magnetics</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Note 1: SP3002D only provides true North Output when given magnetic variation. It does not compute magnetic variation directly as there is no built-in World Magnetic Model.

- **Accurate Tilt Compensated Magnetic Heading**
 - Magnetic heading is based on a level condition relative to the surface of the Earth. When the compass platform is tilted, an incorrect heading would result if left uncompensated. The Sparton digital compass measures the 3-dimensional magnetic...
and acceleration field conditions and mathematically corrects the magnetic readings based on the compass orientation.

- **Adaptive 3D In-Field Magnetic Calibration (SP3003D and SP3004D only)**
 - The Sparton digital compass uses a unique adaptive algorithm that monitors the magnetic field conditions during movement (roll, pitch, and yaw) of the compass platform. The adaptive algorithm minimizes both hard and soft magnetic distortion errors of the compass and mounting platform (i.e. distortions that move with the compass). The calibration can be turned on, off, or reset to the factory default settings.

- **Full 360° Rollover Capability**
 - The Sparton digital compass processing is able to tilt compensate the magnetic readings in any orientation. This gives the compass the ability to provide an accurate magnetic heading for full 360° roll angles.

- **Motion Stabilization**
 - **User Selectable Digital Filter**
 - The Sparton digital compass uses a single pole digital filter to reduce fluctuations in the heading, pitch and roll outputs.
 - **Dynamic Filter (SP3003D and SP3004D only)**
 - Most compasses measure the direction of acceleration due to Earth’s gravity to determine a level orientation for tilt compensation. Acceleration due to platform movement can cause errors in heading determination. The unique algorithms developed for the Sparton digital compass help to stabilize heading, pitch and roll information in the presence of motion. The dynamic filtering capability can be disabled on the SP3004D.

- **Four User Analog Input Channels**
 - **General-purpose analog inputs**, digitized to 12-bits, which can be used to monitor external analog signals such as power supply voltages, pressure sensors, or external temperature sensors.

- **Eight User Digital Input/Output Channels**
 - **General-purpose digital inputs or outputs** used to monitor or control external digital circuitry. Each channel is user-configurable to be either an input or an output. Inputs can be monitored and outputs can be controlled through the serial port.

- **Variation Correction**
 - The Sparton digital compass directly determines the magnetic heading. The compass can provide true North heading when given the current magnetic variation. The compass can calculate the magnetic variation when given GPS information (latitude, longitude, altitude, time) or can be entered directly if the variation angle is known.
- **True 3D magnetic measurements (in milligauss)**
 - The on-board magnetometers are calibrated in-factory to provide true X, Y, and Z magnetic field strengths in milligauss. This magnetic vector is relative to the compass platform. Stray magnetic fields due to the compass application are compensated using the in-field 3D calibration to maintained accuracy.

- **True Absolute Magnetic Field Strength (in milligauss)**
 - The magnetic vector components (X, Y, Z) are combined to provide the total magnetic field strength in milligauss.

- **True 3D Acceleration Measurements (in milli-g)**
 - The on-board accelerometers are calibrated in-factory to provide true X, Y, and Z acceleration strengths in milli-g (where 1000milli-g = Earth’s Gravity).

- **Pitch and Roll (in degrees)**
 - Pitch and Roll angles describe the orientation of the Sparton digital compass in degrees from a level condition.

- **2D Calibration (SP3002D and SP3004D only)**
 - A revolutionary 2-D calibration algorithm has been developed to allow accurate, in-field calibration for platform-based applications with limited pitch and roll capability. Compass analyzes magnetic input data during manual calibration and determines automatically whether to perform a 2D or 3D calibration.

- **Temperature (in degrees C)**
 - An on-board calibrated temperature sensor measures the temperature of the Sparton digital compass in degrees-C.

- **User Selectable Mounting Configuration**
 - Mounting configuration is user-selectable between horizontal (default) and vertical orientations.

- **Bi-Directional SPI Communication**
 - Serial Peripheral Interface (SPI) is a standard communication for use in imbedded applications. The SPI interface uses four direct lines (Enable, Clock, Data In, Data Out) to communicate to an external controller.

- **Bi-Directional RS232 Communication**
 - RS232 is a standard communication for remote applications.
 - The SP3003D is currently fixed at 9600 baud, 8 data bits, 1 stop bit, and no parity.
 - The SP3002D and SP3004D offer selectable baud rates in the range of 1200 baud to 115.2k baud.
- **High Resolution Magnetics (SP3003D and SP3004D only)**
 - The SP3003D and SP3004D offer higher resolution magnetic measurements which provide increased heading accuracy for the most demanding applications.

- **+3.3V Operation or 5-20V Operation**
 - Power can be supplied directly to the Sparton digital compass (3.3V operation). If higher voltage operation is necessary, a separate 5-20V input can be used utilizing an on-board regulator to generate the 3.3V required by the compass. Note that if higher voltages are used, the digital interface to the compass will still be at 3.3V logic levels. RS232 levels are standard and are unaffected by the power supplied to the compass.

- **Low Power (36 mW)**
 - The Sparton digital compass requires only 3.3V at 11mA (36mW) to function making it ideal for low power applications.

- **Small Size (1.5” square)**
 - The small size of the Sparton digital compass allows for use in space sensitive applications.

- **Robust Design**
 - The Sparton digital compass is delivered as a potted module ready to meet the requirements of your design application and environment.

WARNING: It is important to note that operating environments can adversely affect magnetic compasses. Any device operating in the vicinity of a magnetic compass that produces a time-varying magnetic field may degrade compass performance. In addition, any magnetic material that causes severe magnetic distortions in the vicinity of the compass may also degrade compass performance. It is recommended that Sparton be included at the front-end of your product design to assist with compass integration.
SPECIFICATIONS

Performance data applies under the following conditions unless otherwise specified:
3.3V, 25°C, 0g Acceleration for Pitch/Roll, 500mGauss Magnetic Field, Magnetic Calibration Off/Reset

MECHANICAL

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>TYPICAL</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (L x W x H)</td>
<td>Potted Assembly</td>
<td>3.9 x 3.9 x 1.9</td>
<td>cm</td>
</tr>
<tr>
<td>Weight</td>
<td>Potted Assembly</td>
<td>30</td>
<td>grams</td>
</tr>
<tr>
<td>Mounting Options</td>
<td>Connectors or Soldered</td>
<td>Horizontal or Vertical</td>
<td>---</td>
</tr>
</tbody>
</table>

ENVIRONMENTAL

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40°C to 125°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>95% Humidity, 70°C, 240 Hours</td>
</tr>
<tr>
<td></td>
<td>Meets MIL-STD-202G - Method 103A, Test Condition A</td>
</tr>
<tr>
<td>Shock</td>
<td>1500g, 1ms Pulse, Half-Sine Wave</td>
</tr>
<tr>
<td></td>
<td>Meets MIL-STD-202G - Method 213B, Test Condition F</td>
</tr>
<tr>
<td>Vibration</td>
<td>.06 dB Power Spectral Density, 9.26 Grms</td>
</tr>
</tbody>
</table>

BEARING

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>TYPICAL SP3002D</th>
<th>TYPICAL SP3003D & SP3004D</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy(^1)</td>
<td>Static/Level, Factory Cal.</td>
<td>0.8°</td>
<td>0.3°</td>
<td>Deg RMS</td>
</tr>
<tr>
<td>Accuracy(^2)</td>
<td>Static/After 3D Cal.</td>
<td>0.8°</td>
<td>0.5°</td>
<td>Deg RMS</td>
</tr>
<tr>
<td>Accuracy(^3)</td>
<td>Static/After 2D Cal</td>
<td>1.5°</td>
<td>1.0</td>
<td>Deg RMS</td>
</tr>
<tr>
<td>Resolution</td>
<td>360° / 2°</td>
<td>0.1°</td>
<td>0.1°</td>
<td>Deg</td>
</tr>
<tr>
<td>Repeatability</td>
<td>Level</td>
<td>0.2°</td>
<td>0.05°</td>
<td>Deg RMS</td>
</tr>
</tbody>
</table>

Notes:
1. Factory calibration accuracy is valid for both horizontal and vertical mounting options of the compass. This applies for Pitch angles of +/- 90° and Roll angles of +/- 180°.
2. Compass accuracy under dynamic motion conditions is dependant on the specific design application.
3. SP3004D only. Results will vary depending on geographic location, calibration method, and the quality of in-field calibration.

X-Y-Z ACCELERATION

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>TYPICAL</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Range</td>
<td>Each Axis</td>
<td>+/- 1.7</td>
<td>g</td>
</tr>
<tr>
<td>Noise Density</td>
<td>@25°C</td>
<td>200</td>
<td>µg/√Hz</td>
</tr>
<tr>
<td>Pitch Accuracy</td>
<td>0-90 Deg</td>
<td><0.2°</td>
<td>Deg RMS</td>
</tr>
<tr>
<td>Pitch Resolution</td>
<td>90° / 2°</td>
<td>0.02°</td>
<td>Deg</td>
</tr>
<tr>
<td>Roll Accuracy</td>
<td>0-180 Deg</td>
<td><0.2°</td>
<td>Deg RMS</td>
</tr>
<tr>
<td>Roll Resolution</td>
<td>180° / 2°</td>
<td>0.04°</td>
<td>Deg</td>
</tr>
<tr>
<td>Tilt Range</td>
<td>---</td>
<td>+/- 90° Pitch, +/- 180° Roll</td>
<td>Deg</td>
</tr>
</tbody>
</table>
MAGNETICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>TYPICAL SP3002D</th>
<th>TYPICAL SP3003D & SP3004D</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated Range</td>
<td>Each Axis</td>
<td>+/- 0.9</td>
<td>+/- 0.9</td>
<td>Gauss</td>
</tr>
<tr>
<td>Resolution</td>
<td>---</td>
<td>+/- 0.6</td>
<td>+/- 0.2</td>
<td>milliGauss</td>
</tr>
<tr>
<td>Repeatability</td>
<td>---</td>
<td>+/- 1.0</td>
<td>+/- 1.0</td>
<td>milliGauss</td>
</tr>
</tbody>
</table>

ELECTRICAL

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>TYPICAL</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Supply*</td>
<td>Regulated</td>
<td>3.3V</td>
<td>Volts DC</td>
</tr>
<tr>
<td>Input Supply*</td>
<td>Unregulated</td>
<td>5V-20V</td>
<td>Volts DC</td>
</tr>
<tr>
<td>Logic Inputs/Outputs</td>
<td>Low State</td>
<td>0.0</td>
<td>Volts DC</td>
</tr>
<tr>
<td></td>
<td>High State</td>
<td>3.3</td>
<td>mA</td>
</tr>
<tr>
<td>Current</td>
<td>Vcc = 3.3V</td>
<td>11</td>
<td>mA</td>
</tr>
<tr>
<td>Power</td>
<td>Vcc = 3.3V</td>
<td>36</td>
<td>mW</td>
</tr>
<tr>
<td>Data Update Rate</td>
<td>Max</td>
<td>10</td>
<td>Hz</td>
</tr>
<tr>
<td>Power-Up Time*</td>
<td>Max</td>
<td>600</td>
<td>msec</td>
</tr>
<tr>
<td>Temperature Accuracy</td>
<td>-40 to +85</td>
<td>+/- 3</td>
<td>ºC</td>
</tr>
</tbody>
</table>

Notes:
4. Voltage can be applied to either 3.3V (Connector 1, pin 17) at 3.3V regulated or +VIN (Connector 1, pin 19) at 5-20V unregulated but not both.
5. This is the total time until the first output, which includes reset time, boot time, and latency until first output. The on-board reset circuitry has 20k pull-up resistance. To hold the compass in reset, use a transistor to pull the RST pin to GND.

DIGITAL INTERFACE

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>TYPICAL</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPI_EN</td>
<td>Slave Only</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td>SPI_MOSI</td>
<td>Input</td>
<td>LOGIC 0: 0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOGIC 1: 3.3</td>
<td></td>
</tr>
<tr>
<td>SPI_CLK</td>
<td>Input</td>
<td>LOGIC 0: 0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOGIC 1: 3.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FREQUENCY = 4.0 (MAX)</td>
<td>MHz</td>
</tr>
<tr>
<td>SPI_MISO</td>
<td>Output</td>
<td>LOGIC 0: 0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOGIC 1: 3.3</td>
<td></td>
</tr>
<tr>
<td>UART</td>
<td>8 Data Bits, 1 Stop Bit</td>
<td>9600 (SP3003D)</td>
<td>Baud</td>
</tr>
<tr>
<td></td>
<td>No Parity</td>
<td>1200 – 115.2K (SP3002D & SP3004D ONLY)</td>
<td></td>
</tr>
<tr>
<td>UART: URXD0</td>
<td>Input</td>
<td>LOGIC 0: 0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOGIC 1: 3.3</td>
<td></td>
</tr>
<tr>
<td>UART: UTXD0</td>
<td>Output</td>
<td>LOGIC 0: 0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOGIC 1: 3.3</td>
<td></td>
</tr>
<tr>
<td>UART RXD/TXD</td>
<td></td>
<td>Fully Compliant With RS-232-C Standard</td>
<td></td>
</tr>
</tbody>
</table>

CAUTION: The Digital Compass is an electrostatic sensitive device. Observe proper ESD precautions to avoid permanent damage caused by static discharge.
CONNECTOR 1 DEFINITIONS

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>PIN NUMBER</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>UART0_TXD</td>
<td>1</td>
<td>O</td>
<td>3.3V TXD output before RS232 level conversion</td>
</tr>
<tr>
<td>UART0_RXD</td>
<td>3</td>
<td>I</td>
<td>3.3V RXD input before RS232 level conversion</td>
</tr>
<tr>
<td>~RST</td>
<td>5</td>
<td>I</td>
<td>Reset input. Pull low to reset digital compass</td>
</tr>
<tr>
<td>TDO/TDI</td>
<td>7</td>
<td>I/O</td>
<td>JTAG test data input/output</td>
</tr>
<tr>
<td>TDI</td>
<td>9</td>
<td>I</td>
<td>JTAG test data input</td>
</tr>
<tr>
<td>TCK</td>
<td>11</td>
<td>I</td>
<td>JTAG test clock</td>
</tr>
<tr>
<td>TMS</td>
<td>13</td>
<td>I</td>
<td>JTAG test mode select</td>
</tr>
<tr>
<td>---</td>
<td>15</td>
<td></td>
<td>No Connection. Pin removed for keying.</td>
</tr>
<tr>
<td>3.3V</td>
<td>17</td>
<td></td>
<td>Digital Supply</td>
</tr>
<tr>
<td>+VIN</td>
<td>19</td>
<td></td>
<td>Unregulated supply input (optional)</td>
</tr>
<tr>
<td>MCLK_OUT</td>
<td>2</td>
<td>O</td>
<td>Master clock out. Buffered internal master bus clock</td>
</tr>
<tr>
<td>---</td>
<td>4</td>
<td>I</td>
<td>Reserved for factory use</td>
</tr>
<tr>
<td>DGND</td>
<td>6</td>
<td></td>
<td>Digital Ground</td>
</tr>
<tr>
<td>---</td>
<td>8</td>
<td>I</td>
<td>Reserved for factory use</td>
</tr>
<tr>
<td>SPI_CLK</td>
<td>10</td>
<td>I/O</td>
<td>SPI clock</td>
</tr>
<tr>
<td>SPI_SOMI</td>
<td>12</td>
<td>O</td>
<td>SPI slave output</td>
</tr>
<tr>
<td>SPI_SIMO</td>
<td>14</td>
<td>I</td>
<td>SPI slave input</td>
</tr>
<tr>
<td>SPI_EN</td>
<td>16</td>
<td>I</td>
<td>SPI enable</td>
</tr>
<tr>
<td>RS232_OUT</td>
<td>18</td>
<td>O</td>
<td>RS232 compatible output</td>
</tr>
<tr>
<td>RS232_IN</td>
<td>20</td>
<td>I</td>
<td>RS232 compatible input</td>
</tr>
</tbody>
</table>

CONNECTOR 1 has a SAMTEC part number TMS-110-02-S-D-“015”. Its mating female part has a SAMTEC part number ASP-116524-02. The ASP part number was created by SAMTEC to reflect the standard SLM-110-01-S-D connector with one hole in the connector blocked. The hole is blocked to add keying between the compass and the connector to prevent installing the compass 180 degrees out or with the pins misaligned. The ASP part numbers are not recognized in their on-line ordering system. You can either call them and order the keyed connectors per the ASP part numbers or if you need parts quickly then you can order the unkeyed connectors on-line (part # SLM-110-01-S-D).
CONNECTOR 2 DEFINITIONS

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>PIN NUMBER</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGND</td>
<td>1</td>
<td></td>
<td>Digital Ground</td>
</tr>
<tr>
<td>DGND</td>
<td>3</td>
<td></td>
<td>Digital Ground</td>
</tr>
<tr>
<td>DIGITAL0</td>
<td>5</td>
<td>I/O</td>
<td>Spare digital input/output, channel 0</td>
</tr>
<tr>
<td>DIGITAL1</td>
<td>7</td>
<td>I/O</td>
<td>Spare digital input/output, channel 1</td>
</tr>
<tr>
<td>DIGITAL2</td>
<td>9</td>
<td>I/O</td>
<td>Spare digital input/output, channel 2</td>
</tr>
<tr>
<td>DIGITAL3</td>
<td>11</td>
<td>I/O</td>
<td>Spare digital input/output, channel 3</td>
</tr>
<tr>
<td>DIGITAL4</td>
<td>13</td>
<td>I/O</td>
<td>Spare digital input/output, channel 4</td>
</tr>
<tr>
<td>DIGITAL5</td>
<td>15</td>
<td>I/O</td>
<td>Spare digital input/output, channel 5</td>
</tr>
<tr>
<td>DIGITAL6</td>
<td>17</td>
<td>I/O</td>
<td>Spare digital input/output, channel 6</td>
</tr>
<tr>
<td>DIGITAL7</td>
<td>19</td>
<td>I/O</td>
<td>Spare digital input/output, channel 7</td>
</tr>
<tr>
<td>YFILT</td>
<td>2</td>
<td>O</td>
<td>Analog Y acceleration (unbuffered) (^{(1)})</td>
</tr>
<tr>
<td>XFILT</td>
<td>4</td>
<td>O</td>
<td>Analog X acceleration (unbuffered) (^{(1)})</td>
</tr>
<tr>
<td>DGND</td>
<td>6</td>
<td></td>
<td>Digital Ground</td>
</tr>
<tr>
<td>---</td>
<td>8</td>
<td></td>
<td>No Connection. Pin removed for keying.</td>
</tr>
<tr>
<td>YFILTZ</td>
<td>10</td>
<td>O</td>
<td>Reserved for future use</td>
</tr>
<tr>
<td>XFILTZ</td>
<td>12</td>
<td>O</td>
<td>Analog Z acceleration (unbuffered) (^{(1)})</td>
</tr>
<tr>
<td>ANALOG3</td>
<td>14</td>
<td>I</td>
<td>Spare analog 12-bit ADC input, channel 3</td>
</tr>
<tr>
<td>ANALOG2</td>
<td>16</td>
<td>I</td>
<td>Spare analog 12-bit ADC input, channel 2</td>
</tr>
<tr>
<td>ANALOG1</td>
<td>18</td>
<td>I</td>
<td>Spare analog 12-bit ADC input, channel 1</td>
</tr>
<tr>
<td>ANALOG0</td>
<td>20</td>
<td>I</td>
<td>Spare analog 12-bit ADC input, channel 0</td>
</tr>
</tbody>
</table>

CONNECTOR 2 has a SAMTEC part number TMS-110-02-S-D-“008”. Its mating female part has a SAMTEC part number ASP-116524-01. The ASP part number was created by SAMTEC to reflect the standard SLM-110-01-S-D connector with one hole in the connector blocked. The hole is blocked to add keying between the compass and the connector to prevent installing the compass 180 degrees out or with the pins misaligned. The ASP part numbers are not recognized in their online ordering system. You can either call them and order the keyed connectors per the ASP part numbers or if you need parts quickly then you can order the unkeyed connectors on-line (part # SLM-110-01-S-D).

NOTES:

(1) Analog X/Y/Z acceleration outputs are unbuffered. Leave pins unconnected or use a high-impedance input buffer. Loading of these outputs will cause errors in platform orientation and ultimately cause heading errors.
MECHANICAL INTERFACE

The Digital Compass is shipped as a potted module as shown in Figures 1-3. The potting is an electrically insulating, thermally conductive epoxy. The potting provides a robust, rugged design suited for a variety of applications and installation environments.

FIGURE 1 – POTTED ASSEMBLY
FIGURE 2 – MECHANICAL LAYOUT
FIGURE 3 – MECHANICAL LAYOUT
Pitch is associated with rotation about the Y-axis. It is measured using the X-axis accelerometer to measure tilt. Similarly, roll is associated with rotation about the X-axis and is measured using the Y-axis accelerometer. The board should be mounted horizontally with the Z-axis pointing toward the gravity vector (down). The compass will indicate the heading which corresponds to the angle between magnetic north and the North direction of the compass board.

FIGURE 4 – HEADING IDENTIFICATION (HORIZONTAL MOUNT)
HEADING IDENTIFICATION – VERTICAL MOUNTING

Pitch is associated with rotation about the Y-axis. It is measured using the X-axis accelerometer to measure tilt. Similarly, roll is associated with rotation about the X-axis and is measured using the Y-axis accelerometer. The board should be mounted vertically with the Z-axis pointing toward the gravity vector (down). The compass will indicate the heading which corresponds to the angle between magnetic north and the North direction of the compass board.

FIGURE 5 – HEADING IDENTIFICATION (VERTICAL MOUNT)
DIGITAL COMPASS MOUNTING

The Digital Compass module can be assembled to a Customer Interface Board through the use of mating connectors or direct soldering to plated thru-holes. The plated thru-hole pattern required for direct soldering is shown in Figure 6. A pin is missing from the appropriate connector to enable orientation keying when the Digital Compass is soldered to an Interface Board. If a removable connection method is desired, the Digital Compass can be mated to an Interface Board which includes keyed female SAMTEC connector part number ASP-116524-02 for Connector #1 and ASP-116524-01 for Connector #2 (the unkeyed SAMTEC connector part number is SLM-110-01-S-D).

FIGURE 6 - HOLE PATTERN FOR SOLDERING TO INTERFACE BOARD
COMPASS INSTALLATION CONSIDERATIONS

Magnetic compasses measure the Earth’s local magnetic field and acceleration due to gravity to determine an accurate heading. Any magnetic material that would change the intensity or direction of the Earth’s magnetic field will affect compass performance. The following guidelines should be considered when installing the digital compass:

- Install compass away from magnetic materials such as iron or steel. If the compass is to be enclosed, use aluminum, copper, or other non-magnetic material.
- Batteries are magnetic and should be kept as far away as possible.
- Permanent magnets and electric motors generate both static and time-varying magnetic disturbances and should be kept away from the compass.
- High-current carrying wires can also generate static and time-varying magnetic fields and should be routed away from the compass.
- The Sparton digital compass can be mounted either horizontally or vertically depending on your application and space requirements. The factory default setting is horizontal. If vertical mode is desired, the compass must be configured for that orientation by sending the appropriate NATIVE or NMEA command. Refer to Heading Identification section of this document for additional mounting information.

COMPASS OPERATIONAL CONSIDERATION

- The digital compass is an electrostatic sensitive device. Observe proper ESD precautions to avoid permanent damage caused by static discharge.
- The digital compass operates on either a regulated 3.3V or an unregulated voltage in the range 5-20V. If using 3.3V regulated power, connection should be made to pin 17 of connector 1. If using 5-20V unregulated power, connection should be made to pin 19 of connector 1.
- The compass reset (~RST) line, pin 5 of connector 1, can be used to force a hardware reset of the compass. The on-board reset circuitry has a 20k pull-up resistance. To hold the compass in reset, use a transistor to pull the RST pin to GND.
- If using SPI communication, all interface lines (Enable, Clock, SIMO, SOMI) use 3.3V logic levels. Exceeding these levels could cause permanent electrical damage to the compass.
- The in-field magnetic calibration must be performed after installation to achieve specified accuracy. Follow the calibration steps listed under any of the NATIVE or NMEA magnetic calibration commands. Pitch and roll are factory calibrated and require no additional field calibration.
ENCAPSULANT PROPERTIES

DESCRIPTION

The potting compound is a proprietary two component, thermally conductive epoxy encapsulant. It features a low coefficient of thermal expansion and excellent electrical insulative properties.

KEY FEATURES

- Provides structural integrity to the product during handling and a robust design for applications exposed to environmental shock and vibration conditions
- Provides a top-level corrosion/moisture barrier
- Exhibits excellent thermal conductivity which readily dissipates heat from embedded components
- Has a low coefficient of thermal expansion which provides low stress on embedded components

MATERIAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness</td>
<td>ASTM-D-2240</td>
<td>Shore D</td>
<td>92</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>ASTM-D-790</td>
<td>mPa, psi</td>
<td>106, 15,300</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>ASTM-D-695</td>
<td>mPa, psi</td>
<td>120, 17,400</td>
</tr>
<tr>
<td>Linear Shrinkage</td>
<td>ASTM-D-2566</td>
<td>cm/cm</td>
<td>0.003</td>
</tr>
<tr>
<td>Water Absorption (24 hours)</td>
<td>ASTM-D-570</td>
<td>%</td>
<td>0.02</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion</td>
<td>ASTM-D-3386</td>
<td>10^{-6}°C, 10^{-6}°C</td>
<td>39.4, 111.5</td>
</tr>
<tr>
<td>Glass Transition Temperature</td>
<td>ASTM-D-3418</td>
<td>°C</td>
<td>68</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>ASTM-D-2214</td>
<td>W/m.K, Btu-in/hr-ft²,°F</td>
<td>1.02, 7.1</td>
</tr>
<tr>
<td>Temperature Range of Use</td>
<td>n/a</td>
<td>°C</td>
<td>-65 to +105</td>
</tr>
<tr>
<td>Dielectric Strength</td>
<td>ASTM-D-149</td>
<td>kV/mm, V/mil</td>
<td>14.8, 375</td>
</tr>
<tr>
<td>Dielectric Constant @ 1 mHz</td>
<td>ASTM-D-150</td>
<td>-</td>
<td>5.36</td>
</tr>
<tr>
<td>Dissipation Factor @ 1 mHz</td>
<td>ASTM-D-150</td>
<td>-</td>
<td>0.051</td>
</tr>
<tr>
<td>Volume Resistivity @ 25°C</td>
<td>ASTM-D-257</td>
<td>Ohm-cm</td>
<td>>10¹³</td>
</tr>
</tbody>
</table>
APPLICATION INFORMATION

SERIAL PERIPHERAL INTERFACE (SPI)

The SPI port provides synchronous communication between the compass and a host controller or master. The compass is configured as a slave device and is controlled by commands from an external master. During SPI data transfer, the master shall assert the SPI_EN line low to signify the start of an SPI transmission. Command bits are latched on the SPI_SIMO line with the falling edge of SPI_CLK. See the *serial command definitions* section for descriptions of valid SPI commands. Once a command string has been received, the SPI_SOMI line will go high signifying that the command has been received and is being processed. Once complete, the SPI_SOMI line will go low. Results will serially shift out of the compass on the SPI_SOMI line with each rising edge of SPI_CLK. The last byte transmitted by the compass will always be the hexadecimal value 0xA0.

![SPI Commands Diagram](image)

FIGURE 7 – SPI COMMANDS
UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

The UART communicates with the digital compass using standard RS232 format:

SP3003D: 9600 Baud, 8 data bits, 1 stop bit, no parity.
SP3002D and SP3004D: 9600 Baud (factory default), selectable from 1200 to 115.2K Baud, 8 data bits, 1 stop bit, no parity.

Similar to the SPI port, the UART provides full duplex communication. See the *Native or NMEA serial command definitions* section for description of valid RS232 commands.

JTAG INTERFACE

The JTAG interface allows for in-circuit emulation and programming of the FLASH memory within the microcontroller. During development, this is useful for refining the software code and adapting it to a particular application. Once the software is finalized, the security fuse within the micro is blown. This permanently disables the JTAG port and protects the CODE and RAM information from being accessed or modified. **The JTAG fuse is blown on all Sparton’s digital compass units.**
NATIVE SERIAL COMMAND DEFINITIONS

Native commands allow for compact and efficient communication with the digital compass using the UART or SPI interface. Data is formatted on a hexadecimal byte level requiring minimal communication time to transfer commands to and from the compass. Processing of data received from the compass also becomes easier as parsing of text strings is not required. All native commands sent to the compass begin with a header byte (0xA4) and end with a termination byte (0xA0).

If the compass does not recognize a sequence of bytes as being a native command, no response is produced. If the compass recognizes the command but, for some reason, cannot execute it, it will respond with an error code. All error codes begin with a header byte (0xAE) and end with a termination byte (0xA0).

Error Code Format: 3 Bytes (0xAE, 8-bit error code, 0xA0)

8-bit Error Codes:

- 0xFF = Improper command termination (i.e. no 0xA0 found)
- 0xFE = Receive buffer overflow
- 0xFD = Invalid parameter associated with given command
RAW MAGNETICS

Send: 3 Byte (0xA4, 0x01, 0xA0)
Response: 9 Bytes (0xA4, 0x01, Mx, My, Mz as 16-bit integers, 0xA0)

Reads current magnetics directly from magnetometers (Mx, My, and Mz). These are raw sensor readings and do not yet have any calibration parameters applied.

HEADING - TRUE

Send: 3 Byte (0xA4, 0x02, 0xA0)
Response: 5 Bytes (0xA4, 0x02, Heading as a 16-bit signed integer, 0xA0)

Heading (degrees) = (16-bit Heading value)*360/4096
Heading Range = 0.0 to +359.9

Reads the current true heading. The heading is compensated for platform tilt. True heading is the magnetic heading corrected for magnetic variance.

HEADING - MAGNETIC

Send: 3 Byte (0xA4, 0x09, 0xA0)
Response: 5 Bytes (0xA4, 0x09, Heading as a 16-bit signed integer, 0xA0)

Heading (degrees) = (16-bit Heading value)*360/4096
Heading Range = 0.0 to +359.9

Reads the current magnetic heading. The heading is compensated for platform tilt.
MAGNETIC VARIATION

Send: 5 Bytes (0xA4, 0x83, 16-bit signed integer value MSB first, 0xA0)
Response: 5 Bytes (0xA4, 0x83, 16-bit signed Variation, 0xA0)

Set the magnetic variation angle. The heading will be adjusted to indicate true north instead of magnetic north. Magnetic variation angles >+180 and <-180 will be limited to +180 and –180 respectively.

16-bit signed integer = (Magnetic Variation)*10.0

AUTOMATIC MAGNETIC VARIATION (SP3003D & SP3004D ONLY)

Send: 3 Byte (0xA4, 0x0F, 0xA0)
Response: 5 Bytes (0xA4, 0x0F, Variation as a 16-bit signed integer, 0xA0)

16-bit signed integer = (Magnetic Variation)*10.0

Latitude, Longitude, Altitude, and Day should be programmed separately using their respective commands before issuing this command. Automatic variation will compute the local magnetic variance based on your current geographical location (geodetic coordinate system referenced to the WGS 84 ellipsoid). Once the computation is complete, the magnetic variance will be updated in the compass. NOTE: TO RETAIN MAGNETIC VARIANCE ACCURACY, THE MAGNETIC MODEL MUST BE UPDATED EVERY FIVE YEARS. A SEPARATE PROGRAM IS AVAILABLE ON THE SUPPLIED CD WHICH WILL ASSIST IN DOWNLOADING NEW COEFFICIENTS INTO THE DIGITAL COMPASS. THIS ONLY AFFECTS THE CALCULATION OF TRUE HEADING AND DOES NOT AFFECT MAGNETIC HEADING ACCURACY. NOTE: Resetting the magnetic parameters to the factory default does not affect the magnetic variance information. To clear out the magnetic variance, manually set the magnetic variance to zero.

LATITUDE (SP3003D & SP3004D ONLY)

Send: 5 Bytes (0xA4, 0x8B, 16-bit signed integer value MSB first, 0xA0)
Response: 5 Bytes (0xA4, 0x8B, 16-bit Latitude, 0xA0)

16-bit signed integer = (North(+) or South(-) Latitude in degrees)*100.0

Set the geodetic latitude angle in degrees (geodetic coordinate system referenced to the WGS 84 ellipsoid). The magnetic variation will not change until latitude, longitude, altitude, and
day have been programmed and the Automatic Variance command is issued. Latitude >+90 or <-90 will be limited to +90 and –90 respectively.

LONGITUDE (SP3003D & SP3004D ONLY)

Send: 5 Bytes (0xA4, 0x8C, 16-bit signed integer value MSB first, 0xA0)
Response: 5 Bytes (0xA4, 0x8C, 16-bit signed Longitude, 0xA0)

16-bit signed integer = (East(+) or West(-) Longitude in degrees)*100.0

Set the geodetic longitude angle in degrees (geodetic coordinate system referenced to the WGS 84 ellipsoid). The magnetic variation will not change until latitude, longitude, altitude, and day have been programmed and the Automatic Variance command is issued. Latitude >+180 or <-180 will be limited to +180 and –180 respectively.

ALTITUDE (SP3003D & SP3004D ONLY)

Send: 5 Bytes (0xA4, 0x8D, 16-bit signed integer value MSB first, 0xA0)
Response: 5 Bytes (0xA4, 0x8D, 16-bit signed Altitude, 0xA0)

16-bit signed integer = +/- Altitude in meters

Set the geodetic altitude in meters above sea level (geodetic coordinate system referenced to the WGS 84 ellipsoid). The magnetic variation will not change until latitude, longitude, altitude, and day have been programmed and the Automatic Variance command is issued. Altitude >+32767 or <-32767 will be limited to +32767 and –32767 respectively.

DAY (SP3003D & SP3004D ONLY)

Send: 5 Bytes (0xA4, 0x8E, 16-bit unsigned integer value MSB first, 0xA0)
Response: 5 Bytes (0xA4, 0x8E, 16-bit unsigned Day, 0xA0)

16-bit unsigned integer = (Fractional Day)*10.0

The day is entered as a fractional year based on the current day of the year (i.e. February 15 is the 46th day of the 2008). In fractional terms, this would be 46/365 = 0.126. The Fractional Day value for February 15, 2008 would then be 2008.1 (resolution beyond a tenth causes negligible change in variance). The magnetic variation will not change until latitude, longitude, altitude, and day have been programmed and the Automatic Variance command is issued. Day < 2005 will be limited to 2005.
MAGNETIC VECTOR

Send: 3 Byte (0xA4, 0x04, 0xA0)
Response: 11 Bytes (0xA4, 0x04, MAx, MAy, MAz, MAtotal as 16-bit integers, 0xA0)

Measures the magnetic field strength along each axis (X, Y, and Z) and total absolute field strength (MAtotal) in milligauss.

MAGNETIC CALIBRATION

Send: 4 Bytes (0xA4, 0x56, 8-bit configuration {0x00=OFF, 0x01=AUTO, 0x02=MANUAL, 0xFF = RESET}, 0xA0)
Response: 4 Bytes (0xA4, 0x56, 8-bit configuration, 0xA0)

Controls compass calibration process. Magnetic calibration can be set to OFF, AUTO (SP3003D & SP3004D ONLY), MANUAL, or RESET to the factory-default values. Turning off calibration will save and freeze the current magnetic calibration parameters disabling any further corrections. AUTO calibration will apply adaptive magnetic corrections once the field distortions have been sufficiently sampled. MANUAL calibration mode allows the user to quickly calibrate the compass. After manual calibration, this mode must be changed to either AUTO or OFF. Resetting magnetic calibration will force the magnetic calibration parameters to their factory-default values. The magnetic calibration parameters prior to pressing RESET are not saved and cannot be recovered.

When the compass is first used, it must learn the local magnetic distortions. This will automatically occur over time as the orientation of the compass is changed. The following steps will help to speed the calibration process when the compass is first used:

3-D Calibration

The 3-D calibration routine is used for applications that allow for full 360° pitch and roll. This routine will provide the most accurate calibration in this situation.

1) Set magnetic calibration to OFF.
2) Press RESET to start calibration at the factory default settings. Note: If using SP3002D, it is recommended that a 2-D calibration be performed first per the instructions shown in the next section.
3) Point the compass North and set magnetic calibration to MANUAL.
4) Pitch compass slowly a full 360°. Rotation speed should be 10 seconds per rotation or greater.
5) Point compass East or West and then roll compass slowly a full 360°. Rotation speed should be 10 seconds per rotation or greater. (If using SP3002D, proceed to step 9)

6) Set magnetic calibration to AUTO.

7) Repeat steps (4) and (5) by pitching and then rolling a full 360°.

8) The magnetic error will continue to improve over time as the compass orientation is changed. Eventually, the adaption error will reach a minimum for all orientations.

9) The current magnetic calibration parameters will be saved whenever the magnetic calibration is set to Off.

2-D Calibration (SP3002D and SP3004D Only)

The 2-D calibration routine is used for applications that have limited pitch and roll capability. This routine allows rapid, in-field, on-equipment calibration. The digital compass will determine automatically which calibration mode to use (3-D or 2-D). The compass will select the 2-D calibration mode whenever it is rotated around a single axis (either X, Y, or Z). Entering latitude and longitude information and computing the magnetic variance will provide a more accurate 2-D calibration. The magnetic variance must be computed before the 2-D calibration is executed in order to affect the calibration.

1) Set magnetic calibration to OFF.

2) Press RESET to start calibration at the factory default settings.

3) Orient the compass to a level position.

4) If latitude and longitude are known, use the Automatic Magnetic Variation commands to compute magnetic variance. Skip this step if the latitude and longitude are not known

Note: Computing the magnetic variance will improve accuracy of calibration.

5) Set magnetic calibration to MANUAL

6) Slowly rotate compass heading a full 360°. Rotation speed should be 10 seconds per rotation or greater. (If using SP3002D, proceed to step 9)

7) Set magnetic calibration to AUTO.

8) Slowly rotate compass heading a full 360°. Rotation speed should be 10 seconds per rotation or greater.

9) Set magnetic calibration to off.

MAGNETIC ADAPTATION ERROR

Send: 3 Byte (0xA4, 0x08, 0xA0)

Response: 5 Bytes (0xA4, 0x08, Error as a 16-bit unsigned integer, 0xA0)

Indicates quality of the adaptive magnetic calibration process. Smaller values represent better magnetic calibration. Adaption error is limited to the range 0 to 10,000.
RAW ACCELERATION

Send: 3 Byte (0xA4, 0x05, 0xA0)
Response: 9 Bytes (0xA4, 0x05, AccelX, AccelY, AccelZ as 16-bit integers, 0xA0)

Reads current acceleration directly from accelerometers (AccelX, AccelY, AccelZ). These are raw sensor readings and do not yet have any calibration parameters applied.

PITCH AND ROLL OUTPUT

Send: 3 Byte (0xA4, 0x06, 0xA0)
Response: 7 Bytes (0xA4, 0x06, Pitch, Roll as 16-bit signed integers, 0xA0)

Reads the current platform orientation (Pitch and Roll).

Pitch (in degrees) = (Response Value)*90/4096
Pitch Range = -90 to +90

Roll (in degrees) = (Response Value)*180/4096
Acceleration Vector Roll Range = -180 to +180

ACCELERATION VECTOR

Send: 3 Byte (0xA4, 0x07, 0xA0)
Response: 11 Bytes (0xA4, 0x07, Ax, Ay, Az, Atotal as 16-bit integers, 0xA0)

Measures the acceleration along each axis (X, Y, and Z) and total absolute strength (Atotal) in milli-g.

USER SELECTABLE DIGITAL FILTER

Send: 5 Bytes (0xA4, 0x90, 16-bit filter value MSB first, 0xA0)
Response: 5 Bytes (0xA4, 0x90, 16-bit filter value, 0xA0)

Sets amount of filtering applied to the heading, pitch, and roll information. Filtering is accomplished by using a single-pole digital filter. Low values provide less filtering. Higher values will make the compass less responsive providing more stable heading, pitch, and roll. Acceptable filter values are in the range 1 to 65535 for the SP3002D and SP3003D. The SP3004D allows a filter value of zero to disable the dynamic filtering. Disabling of the dynamic filter is not available on the SP3003D.
Filtered Data = [(Filtered Data)*(Filter Value - 1) + (New Data)] / (Filter Value)

TEMPERATURE

Send: 3 Bytes (0xA4, 0x11, 0xA0)
Response: 5 Bytes (0xA4, 0x11, Temperature as 16-bit unsigned integer MSB first, 0xA0)

Reads the internal temperature channel of the on-board microcontroller. This measurement is calibrated at the factory, though not required by the compass in determining an accurate heading.

Temperature_C = (Temperature_MSB * 256 + Temperature_LSB) / 10.0

BAUD RATE (SP3002D & SP3004D ONLY)

Send: 4 Bytes (0xA4, 0x57, 8-bit BAUD value MSB first, 0xA0)
Response: 4 Bytes (0xA4, 0x4B, 8-bit BAUD value, 0xA0)

Acceptable Baud Rate Values:
- 0x01 = 1200 Baud
- 0x02 = 2400 Baud
- 0x03 = 4800 Baud
- 0x04 = 9600 Baud
- 0x05 = 19.2 kBaud
- 0x06 = 38.4 kBaud
- 0x07 = 57.6 kBaud
- 0x08 = 115.2 kBaud

The factory default BAUD setting is 9600 Baud (0x04). On powerup, the compass will report the baud rate setting on the UART using the printable ASCII characters ‘B4’ for the factory default. When the baud rate command is issued on the UART, the compass will echo back the command once at the current baud rate and then again at the new baud rate. The baud rate will be stored in FLASH and will become the new operating communication rate for the UART. The baud rate will apply to both NATIVE and NMEA commands issued on the UART. When a baud rate command is issued on the SPI, the compass will echo back the command on the UART at the current baud rate and then again on the SPI.

READ ANALOG INPUT

Send: 4 Bytes (0xA4, 0x52, 8-bit channel value MSB first, 0xA0)
Response: 5 Bytes (0xA4, 0x52, A/D value as 16-bit unsigned integer, 0xA0)

Reads the selected analog channel (0 through 8) to a resolution of 12-bits. A response of 0xFFFF indicates an invalid channel was selected.

- Channel 0 = General Purpose Analog Input (ANALOG0)
- Channel 1 = General Purpose Analog Input (ANALOG1)
- Channel 2 = General Purpose Analog Input (ANALOG2)
- Channel 3 = General Purpose Analog Input (ANALOG3)
- Channel 4 = Zx Accelerometer (XFILTZ)
- Channel 5 = Zy Accelerometer (YFILTZ)
- Channel 6 = Horizontal X Accelerometer (XFILT)
- Channel 7 = Horizontal Y Accelerometer (YFILT)
- Channel 8 = Raw Temperature

SET DIGITAL I/O DIRECTION

Send: 4 Bytes (0xA4, 0x53, 8-bit pin direction value MSB first, 0xA0)
Response: 4 Bytes (0xA4, 0x53, 8-bit pin direction value, 0xA0)

Sets I/O pin directions on the expansion port. Setting a bit to 1 will configure that digital I/O pin as an output. All pins are configured as inputs after a reset.

READ DIGITAL INPUT

Send: 3 Byte (0xA4, 0x14, 0xA0)
Response: 4 Bytes (0xA4, 0x14, 8-bit port value, 0xA0)

Reads the current state of all eight digital I/O pins.

SET DIGITAL OUTPUT

Send: 4 Bytes (0xA4, 0x55, 8-bit port value MSB first, 0xA0)
Response: 4 Bytes (0xA4, 0x55, 8-bit port value, 0xA0)

Sets the state of the digital output pins. Pins configured as inputs are not affected.

MOUNTING CONFIGURATION

Send: 4 Bytes (0xA4, 0x4A, 8-bit orientation {0x00=Horizontal, 0x01=Vertical}, 0xA0)
Response: 4 Bytes (0xA4, 0x4A, 8-bit orientation, 0xA0)

Sets the mounting orientation of the compass platform. The default orientation is horizontal (see Figure 4). For vertical orientations, refer to Figure 5. To determine the orientation setting, read the acceleration vector. When in a static level condition, Az should be approximately +1000mg and Ax and Ay should be close to zero.

NMEA SERIAL COMMAND DEFINITIONS

NMEA commands use ASCII text strings to communicate with the digital compass through the UART interface. Data is formatted with the first character being “$” to signify the start of a NMEA command and include a “*” to signify the start of the checksum. It is not necessary to include any checksum characters in commands sent to the digital compass. Each command sent shall be terminated with a carriage return <CR> and line feed <LF>. All NMEA responses from the compass will contain a checksum followed by a carriage return and line feed.

The checksum value is the result of XORing the ASCII bytes between the “$” and “*” characters. This one byte value is reported in the output word by two ASCII characters representing two hex digits, with the most significant nibble first.

Example: $HCHDM,300.4,M,*2E<CR><LF>

$ = Start of NMEA text message
"HCHDM" = Response header from compass. (HC=Magnetic Compass, HDM = Magnetic Heading)
"300.4" = Heading in degrees
"M" = Magnetic Heading
"*" = Start of checksum field
"2E" = Hexadecimal checksum value

Any NMEA command can be repeated continuously by adding the repeat (RPT) instruction to the end of the command string (before the checksum). The repetition rate is given in seconds and should be in the range 0.1 to 500.0 seconds. For example, to request magnetic heading continuously at a 0.5second (2Hz) rate, the following command should be issued:

$xxHDM,RPT=0.5<CR><LF>

The compass will respond by continuously sending magnetic heading information every 0.5 seconds. To discontinue RPT function, simply send another NMEA command. If the compass is powered off during a continuous transmit mode, the compass will continue to transmit continuously when the power is restored.

Note: A minimum delay of 10 millisecond must be inserted immediately after the ‘$’ to allow the compass time to properly turn off the NMEA repeat function. This delay is only required on the first NMEA command following a NMEA repeat function.
Send Example:
1) Send “$” character
2) Wait minimum 10 milliseconds while compass terminates the repeat function
3) Send “xxHDM<cr><.lf>” to finish the NMEA command
4) All following commands can now be sent as “$xxHDM<cr><lf>”

RAW MAGNETICS

Send: $PSPA,MR
Response: $PSPA,MRx=<int#>,MRy=<int#>,MRz=<int#>*<checksum in hex>

Response Example: $PSPA,MRx=1553,MRy=-1669,MRz=-1419*60

Reads current magnetics directly from magnetometers (Mx, My, and Mz). These are raw sensor readings and do not yet have any calibration parameters applied.

HEADING - MAGNETIC

Send: $xxHDM
Response: $HCHDM,<###.# in range 000.0 to 359.9>,M*<checksum in hex>

Response Example: $HCHDM,300.4,M*2E

Reads the current magnetic heading. The heading is compensated for platform tilt.

HEADING - TRUE

Send: $xxHDT
Response: $HCHDT,<###.# in range 000.0 to 359.9>,T*<checksum in hex>

Response Example: $HCHDT,295.9,T*2B

Reads the current true heading. The heading is compensated for platform tilt. True heading is the magnetic heading corrected for magnetic variance.
MAGNETIC VARIATION

Send: $xxVAR,<###.#>,<E or W>
Response: $HCVAR,<###.#>,<E or W>*<checksum in hex>

<###.#> = Variation in range 000.0 to 180.0
<E or W> = Direction of variation East(+) or West(-)

Send Example: $xxVAR,4.2,W
Response Example: $HCVAR,004.2,W*31

Set the magnetic variation angle. The heading will be adjusted to indicate true north instead of magnetic north.

AUTOMATIC MAGNETIC VARIATION (SP3003D & SP3004D ONLY)

Send: $PSPA,AUTOVAR,#Latitude,#Longitude,#Altitude,#Day
Response: $PSPA,AutoVar=<###.#>,*<checksum in hex>

#Latitude = Geodetic latitude in degrees. North(+) or South(-).
#Longitude = Geodetic longitude in degrees. East(+) or West(-).
#Altitude = Geodetic altitude in meters from sea-level
#Day = Fractional day

Send Example: $PSPA,AUTOVAR,29.12,-81.35,100,2005.2
Response Example: $PSPA,AutoVar=005.3*6C

Computes the local magnetic variance based on your current geographical location (geodetic coordinate system referenced to the WGS 84 ellipsoid). Latitude and longitude are entered in degrees with + being north and east respectively. Altitude is entered in meters above sea level. The day is entered as a fractional year based on the current day of the year (i.e. February 15 is the 46th day of the 2008. In fractional terms, this would be 46/365 = 0.126. The Day value for February 15, 2008 would then be entered as 2008.1 (resolution beyond a tenth causes negligible change in variance). Once the computation is complete, the magnetic variance will be updated in the compass. NOTE: TO RETAIN MAGNETIC VARIANCE ACCURACY, THE MAGNETIC MODEL MUST BE UPDATED EVERY FIVE YEARS. A SEPARATE PROGRAM IS AVAILABLE ON THE SUPPLIED CD WHICH WILL ASSIST IN DOWNLOADING NEW COEFFICIENTS INTO THE DIGITAL COMPASS. THIS ONLY AFFECTS THE CALCULATION OF TRUE HEADING AND DOES NOT AFFECT MAGNETIC HEADING ACCURACY. NOTE: Resetting the magnetic parameters to the
factory default does not affect the magnetic variance information. To clear out the magnetic variance, manually set the magnetic variance to zero.

MAGNETIC VECTOR

Send: $PSPA,M
Response: $PSPA,Mx=<int#>,My=<int#>,Mz=<int#>,Mt=<int#>*<checksum in hex>

Response Example: $PSPA,Mx=63,My=-261,Mz=-262,Mt=376*29

Measures the magnetic field strength along each axis (X, Y, and Z) and total absolute field strength (MAtotal) in milligauss.

MAGNETIC CALIBRATION

Send: $PSPA,CAL=OFF
 $PSPA,CAL=AUTO (SP3003D and SP3004D only)
 $PSPA,CAL=MANUAL
 $PSPA,CAL=RESET

Response: $PSPA,Cal=Off*<checksum in hex>
 $PSPA,Cal=Auto*<checksum in hex>
 $PSPA,Cal=Manual*<checksum in hex>
 $PSPA,Cal=Reset*<checksum in hex>

Controls compass calibration process. Magnetic calibration can be set to OFF, AUTO (SP3003D and SP3004D only), MANUAL, or RESET to the factory-default values. Turning off calibration will save and freeze the current magnetic calibration parameters disabling any further corrections. AUTO calibration will apply adaptive magnetic corrections once the field distortions have been sufficiently sampled. MANUAL calibration mode allows the user to quickly calibrate the compass. After manual calibration, this mode must be changed to either AUTO or OFF. Resetting magnetic calibration will force the magnetic calibration parameters to their factory-default values. The magnetic calibration parameters prior to pressing RESET are not saved and cannot be recovered.

When the compass is first used, it must learn the local magnetic distortions. This will automatically occur over time as the orientation of the compass is changed. The following steps will help to speed the calibration process when the compass is first used:

3-D Calibration
The 3-D calibration routine is used for applications that allow for full 360° pitch and roll. This routine will provide the most accurate calibration in this situation.

1) Set magnetic calibration to OFF.
2) Press RESET to start calibration at the factory default settings. Note: If using SP3002D, it is recommended that a 2-D calibration be performed first per the instructions shown in the next section.
3) Point the compass North and set magnetic calibration to MANUAL.
4) Pitch compass slowly a full 360°. Rotation speed should be 10 seconds per rotation or greater.
5) Point compass East or West and then roll compass slowly a full 360°. Rotation speed should be 10 seconds per rotation or greater. (If using SP3002D, proceed to step 9)
6) Set magnetic calibration to AUTO.
7) Repeat steps (4) and (5) by pitching and then rolling a full 360°.
8) The magnetic error will continue to improve over time as the compass orientation is changed. Eventually, the adaption error will reach a minimum for all orientations.
9) The current magnetic calibration parameters will be saved whenever the magnetic calibration is set to Off.

2-D Calibration (SP3002D and SP3004D Only)

The 2-D calibration routine is used for applications that have limited pitch and roll capability. This routine allows rapid, in-field, on-equipment calibration. The digital compass will determine automatically which calibration mode to use (3-D or 2-D). The compass will select the 2-D calibration mode whenever it is rotated around a single axis (either X, Y, or Z). Entering latitude and longitude information and computing the magnetic variance will provide a more accurate 2-D calibration. The magnetic variance must be computed before the 2-D calibration is executed in order to affect the calibration.

1) Set magnetic calibration to OFF.
2) Press RESET to start calibration at the factory default settings.
3) Orient the compass to a level position.
4) If latitude and longitude are known, use the Automatic Magnetic Variation commands to compute magnetic variance. Skip this step if the latitude and longitude are not known
 Note: Computing the magnetic variance will improve accuracy of calibration.
5) Set magnetic calibration to MANUAL
6) Slowly rotate compass heading a full 360°. Rotation speed should be 10 seconds per rotation or greater. (If using SP3002D, proceed to step 9)
7) Set magnetic calibration to AUTO.
8) Slowly rotate compass heading a full 360°. Rotation speed should be 10 seconds per rotation or greater.
9) Set magnetic calibration to off.
MAGNETIC ADAPTATION ERROR

Send: $PSPA,MAGERR
Response: $PSPA,MagErr=<int#>*<checksum in hex>

Response Example: $PSPA,MagErr=16*0A

Indicates quality of the adaptive magnetic calibration process. Smaller values represent lower error corresponding to better magnetic calibration. Adaption error is limited to the range 0 to 10,000.

RAW ACCELERATION

Send: $PSPA,AR
Response: $PSPA,ARx=<int#>,ARy=<int#>,ARz=<int#>*<checksum in hex>

Response Example: $PSPA,ARx=2052,ARy=1991,ARz=1284*61

Reads current acceleration directly from accelerometers (AccelX, AccelY, AccelZ). These are raw sensor readings and do not yet have any calibration parameters applied.
PITCH AND ROLL OUTPUT

Send: $PSPA,PR
Response: $PSPA,Pitch=<##.#>,Roll=<###.#>*<checksum in hex>

Pitch range (degrees): -90.0 to +90.0
Roll range (degrees): -180.0 to +180.0

Example Response: $PSPA,Pitch=+18.2,Roll=-042.4*56

Reads the current platform orientation (Pitch and Roll).

ACCELERATION VECTOR

Send: $PSPA,A
Response: $PSPA,Ax=<int#>,Ay=<int#>,Az=<int#>,At=<int#>*<checksum in hex>

Example Response: $PSPA,Ax=-70,Ay=76,Az=995,At=1000*02

Measures the acceleration along each axis (X, Y, and Z) and total absolute strength (Atotal) in milli-g.

USER SELECTABLE DIGITAL FILTER

Send: $PSPA,FILTER=<int#>
Response: $PSPA,Filter=<int#>*<checksum in hex>

Send Example: $PSPA,FILTER=1
Response Example: $PSPA,Filter=1*12

Sets amount of filtering applied to the heading, pitch, and roll information. Filtering is accomplished by using a single-pole digital filter. Low values provide less filtering. Higher values will make the compass less responsive providing more stable heading, pitch, and roll. Acceptable filter values are in the range 1 to 65535 for the SP3002D and SP3003D. The SP3004D allows a filter value of zero to disable the dynamic filtering. Disabling of the dynamic filter is not available on the SP3003D.

Filtered Data = [(Filtered Data)*(Filter Value-1) + (New Data)] / (Filter Value)
TEMPERATURE

Send: $PSPA,TEMP
Response: $PSPA,Temp=<##.# in -20.0 to +70.0°C>,C*<checksum in hex>

Response Example: $PSPA,Temp=+24.1,C*72

 Reads the internal temperature channel of the on-board microcontroller and converts to degrees C. This measurement is calibrated at the factory for general use even though it is not required by the compass in determining an accurate heading.

BAUD RATE (SP3002D & SP3004D ONLY)

Send: $PSPA,BAUD=<# Baud value>
Response: $PSPA,Baud=<# Baud value>*<checksum in hex>

Send Example: $PSPA,BAUD=4
Response Example: $PSPA,BAUD=4*25

Acceptable Baud Rate Values:

1 = 1200 Baud
2 = 2400 Baud
3 = 4800 Baud
4 = 9600 Baud
5 = 19.2 kBaud
6 = 38.4 kBaud
7 = 57.6 kBaud
8 = 115.2 kBaud

The factory default BAUD setting is 9600 Baud (Baud value = 4). On powerup, the compass will report the baud rate setting on the UART using the printable ASCII characters ‘B4’ for the factory default. When the baud rate command is issued, the compass will echo back the command once at the current baud rate and then again at the new baud rate. The baud rate will be stored in FLASH and will become the new operating communication rate for the UART. The baud rate will apply to both NATIVE and NMEA commands issued on the UART.
READ ANALOG INPUT

Send: $PSPA,READAIN=<channel# 0-8>
Response: $PSPA,ReadAIN=<channel# 0-8>,<return value in hex>*<checksum in hex>

Send Example: $PSPA,READAIN=1
Response Example: $PSPA,ReadAIN=1,07B5*1A

Reads the selected analog channel (0 through 8) to a resolution of 12-bits.
Channel 0 = General Purpose Analog Input (ANALOG0)
Channel 1 = General Purpose Analog Input (ANALOG1)
Channel 2 = General Purpose Analog Input (ANALOG2)
Channel 3 = General Purpose Analog Input (ANALOG3)
Channel 4 = Zx Accelerometer (XFILTZ)
Channel 5 = Zy Accelerometer (YFILTZ)
Channel 6 = Horizontal X Accelerometer (XFILT)
Channel 7 = Horizontal Y Accelerometer (YFILT)
Channel 8 = Raw Temperature

SET DIGITAL I/O DIRECTION

Send: $PSPA,SETDDIR=<## in hex to set pin direction as input or output>
Response: $PSPA,SetDDIR=<## in hex>*<checksum in hex>

Send Example: $PSPA,SETDDIR=0F
Response Example: $PSPA,SetDDIR=0F*2C

Sets I/O pin directions on the expansion port. Setting a bit to 1 will configure that digital I/O pin as an output. All pins are configured as inputs after a reset.

READ DIGITAL INPUT

Send: $PSPA,READDIN
Response: $PSPA,.ReadDIN=<input ## in hex>*<checksum in hex>

Response Example: $PSPA,ReadDIN=0F*04

Reads the current state of all eight digital I/O pins.
SET DIGITAL OUTPUT

Send: $PSPA,SETDOUT=<## in hex>
Response: $PSPA,SetDOUT=<## in hex>*<checksum in hex>

Send Example: $PSPA,SETDOUT=FF
Response Example: $PSPA,SetDOUT=FF*4B

Sets the state of the digital output pins. Pins configured as inputs are not affected.

MOUNTING CONFIGURATION

Send: $PSPA,MOUNT=<‘H’ for horizontal or ‘V’ for vertical>
Response: $PSPA,Mount=<‘H or V’>*<checksum in hex>

Send Example: $PSPA,MOUNT=V
Response Example: $PSPA,Mount=V*18

Sets the mounting orientation of the compass platform. The default orientation is horizontal (see Figure 4). For vertical orientations, refer to Figure 5. To determine the orientation setting, read the acceleration vector. When in a static level condition, Az should be approximately +1000mg and Ax and Ay should be close to zero.

READ TRANSDUCERS

Send: $xxXDR
Response: $HCXDR, <Transducer string as described below>*<checksum in hex>

<Transducer String> =
A, - Angular Displacement Measurement
###.#, - Magnetic Heading
D, - Units of Degrees for Magnetic Heading
A, - Second Angular Displacement Measurement
###.#, - True Heading
D, - Units of Degrees for True Heading
A, - Third Angular Displacement Measurement
+++.#, - Pitch
D, - Units of Degrees for Pitch
A, - Fourth Angular Displacement Measurement
++++.# - Roll
D, - Units of Degrees for Roll
C, - Temperature Measurement
+###., - Temperature
C, - Units of Degrees C for Temperature
G, - Generic Measurement
- Magnetic Error (measurement is unitless)

Send Example: $xxXDR
Response Example:
$HCXDR,A,281.3,D,A,281.3,D,A,+07.9,D,A,-000.8,D,C,+21.1,C,G,0216*2C

Reads current magnetic heading, true heading, pitch, roll, temperature, and magnetic error. This command provides the most frequently used information in one command string.
DEVELOPMENT KIT

The Development Kit is designed as a development tool for Sparton’s digital compass. This tool gives the user a pre-designed platform to interface and communicate with the digital compass. Included in the development kit are:

- One compass interface board and Power Supply
- One 6-Ft, 9-pin serial communication cable
- One software disk (Windows compatible)
 - User documentation
 - Demo software

The interface board allows the digital compass to be connected directly to the serial port of a PC. The interface also provides convenient solder connections to all compass signals for development and testing.

Caution:

Set Power Management of all computers to “Always On”. Laptop users – disable the Hibernate feature.

Analog X/Y/Z acceleration outputs are unbuffered. Leave pins unconnected or use a high-impedance input buffer. Loading of these outputs will cause errors in platform orientation and ultimately cause heading errors.
HARDWARE SETUP

Mate the digital compass with the interface board provided in the kit as shown in Figure 8. North marking on bottom of the compass should match north marking on the interface board. Connect the supplied serial cable to the compass interface and any spare COM port of the host computer (COM1 – COM4).

CAUTION:
The Digital Compass is an electrostatic sensitive device. Observe proper ESD precautions to avoid permanent damage caused by static discharge.

WARNING: Make sure the digital compass is mated correctly to the interface board. Misalignment of the pins can cause serious electrical damage to the compass. Sparton’s warranty does not cover faulty user hardware setup.
SOFTWARE INSTALLATION

Insert the CD into a drive and run setup.exe from the development kit folder. Software will be installed onto the host system by following the on screen instructions. If an earlier version of software is detected, it will be removed from the system. If this happens, simply run setup.exe again to install the compass development kit software.

SOFTWARE OPERATION

With the compass and interface board mated, use the supplied serial cable to connect the interface board to COM1 of the computer. Plug in the DC converter wall adapter and run ”Digital Compass Development Kit” from the Windows Start menu located under “Digital Compass Development Kit”. With the compass connected and the program running, the development kit will establish a connection to the compass (See Figure 9). The software automatically detects the proper communication port (COM1 through COM32) as well as the baud rate (1200 to 115200 baud). Factory default baud rate is 9600 baud.

FIGURE 9 - CONNECTING MESSAGE
The development kit software will attempt to establish a communication link with the digital compass. After establishing a communication link with the digital compass, the development kit software will continually update the display with information (See Figure 10). To exit the program, select the "File/Exit" menu item, then power down the compass assembly.

Magnetic measurements are displayed in milli-gauss. These measurements consist of the true X, Y, and Z components of the magnetic field as seen by the compass. Along with the magnetic vector components, the total magnetic field strength is also displayed. The magnetic measurements are relative to the compass platform orientation and do not include any pitch and roll compensation. Magnetic heading is shown graphically on a compass dial as well as numerically below the dial and indicates the direction in which the compass platform is pointing.
The compass mounting orientation is selected by the “Options/Orientation” menu item. Refer to Figures 4 and 5 for descriptions of the horizontal and vertical orientations.

The magnetic heading can be adjusted to indicate true North by setting the magnetic variance angle. The magnetic variance angle depends on your geographical location. The compass can calculate the variance angle based on latitude, longitude, altitude, and time information obtained from an external GPS source or can be set directly if the magnetic variance is known. To compute the magnetic variation angle, select the “Options/Auto Variance” menu item.

![Digital Compass Magnetic Variance](image)

FIGURE 11 – AUTOMATIC MAGNETIC VARIANCE

Enter your current geographical location (geodetic coordinate system referenced to the WGS 84 ellipsoid). Latitude and longitude are entered in degrees with + being north and east respectively. Altitude is entered in meters above sea level. The day is entered as a fractional year based on the current day of the year (i.e. February 15 is the 46th day of the 2008. In fractional terms, this would be 46/365 = 0.126. The Day value for February 15, 2008 would then be entered as 2008.1 (resolution beyond a tenth causes negligible change in variance). Once the location and time values have been entered, select “Compute Variance” to send the data to the compass. The “Compute Variance” button will turn red while the compass computes the magnetic variance. Once the computation is complete, the magnetic variance will be updated in the compass. **NOTE: TO RETAIN MAGNETIC VARIANCE ACCURACY, THE MAGNETIC MODEL MUST BE UPDATED EVERY FIVE YEARS. A SEPARATE PROGRAM IS AVAILABLE ON THE SUPPLIED CD WHICH WILL ASSIST IN DOWNLOADING NEW COEFFICIENTS INTO THE DIGITAL COMPASS. THIS ONLY AFFECTS THE CALCULATION OF TRUE HEADING AND DOES NOT AFFECT MAGNETIC HEADING ACCURACY.**
The digital compass uses a proprietary adaptive algorithm to provide exceptional calibration accuracy. The adaptive algorithm monitors the 3-dimensional behavior of the magnetics as the compass is rotated. Magnetic material near the compass will cause a distortion in the magnetic field. The compass can detect field distortions caused by any material that move with the compass (i.e. mounting platform). Any detected field distortions cause the adaptive algorithm to automatically adjust the calibration parameters so that the compass retains accuracy under all orientations. The adaptive algorithm can be turned on by moving the selector switch to “Auto”. Turning the adaptive algorithm “Off” will stop any further updating of the calibration parameters and retain the current settings. Pressing “RESET” will force the calibration parameters back to the factory default settings. NOTE: Resetting the magnetic parameters to the factory default does not affect the magnetic variance information. To clear out the magnetic variance, manually set the magnetic variance to zero.

During the adaption process, the algorithm estimates the error in the magnetic calibration. This error is captured, scaled, and displayed graphically on a vertical bar to indicate the overall performance of the adaptive calibration process. When significant magnetic field distortions are detected, the indicator bar will become mostly red. Over time the distortions will be canceled out and the indicator bar will become mostly green.

When the compass is first used, it must learn the local magnetic distortions. This will automatically occur over time as the orientation of the compass is changed. The following steps will help to speed the calibration process when the compass is first used:

3-D Calibration

The 3-D calibration routine is used for applications that allow for full 360° pitch and roll. This routine will provide the most accurate calibration in this situation.

1) Set magnetic calibration to OFF.
2) Press RESET to start calibration at the factory default settings.
3) Point the compass North and set magnetic calibration to MANUAL. Note: If using SP3002D, it is recommended that a 2-D calibration be performed first per the instructions shown in the next section.
4) Pitch compass slowly a full 360°. Rotation speed should be 10 seconds per rotation or greater.
5) Point compass East or West and then roll compass slowly a full 360°. Rotation speed should be 10 seconds per rotation or greater. (If using SP3002D, proceed to step 9)
6) Set magnetic calibration to AUTO.
7) Repeat steps (4) and (5) by pitching and then rolling a full 360°.
8) The magnetic error will continue to improve over time as the compass orientation is changed. Eventually, the adaption error will reach a minimum for all orientations.
The current magnetic calibration parameters will be saved whenever the magnetic calibration is set to Off.

2-D Calibration (SP3002D & SP3004D Only)

The 2-D calibration routine is used for applications that have limited pitch and roll capability. This routine allows rapid, in-field, on-equipment calibration. The digital compass will determine automatically which calibration mode to use (3-D or 2-D). The compass will select the 2-D calibration mode whenever it is rotated around a single axis (either X, Y, or Z). Entering latitude and longitude information and computing the magnetic variance will provide a more accurate 2-D calibration. The magnetic variance must be computed before the 2-D calibration is executed in order to affect the calibration.

1) Set magnetic calibration to OFF.
2) Press RESET to start calibration at the factory default settings.
3) Orient the compass to a level position.
4) If latitude and longitude are known, use the Automatic Magnetic Variation commands to compute magnetic variance. Skip this step if the latitude and longitude are not known.
 Note: Computing the magnetic variance will improve accuracy of calibration.
5) Set magnetic calibration to MANUAL
6) Slowly rotate compass heading a full 360°. Rotation speed should be 10 seconds per rotation or greater. (If using SP3002D, proceed to step 9)
7) Set magnetic calibration to AUTO.
8) Slowly rotate compass heading a full 360°. Rotation speed should be 10 seconds per rotation or greater.
9) Set magnetic calibration to off.

WARNING: It is important to note that operating environments can adversely affect magnetic compasses. Any device operating in the vicinity of a magnetic compass that produces a time-varying magnetic field may degrade compass performance. In addition, any magnetic material that causes severe magnetic distortions in the vicinity of the compass may also degrade compass performance. It is recommended that Sparton be included at the front-end of your product design to assist with compass integration.

Acceleration measurements are displayed in milli-g (where g = 9.8 meters/sec²). These measurements consist of the true X, Y, and Z components of the acceleration as seen by the compass. It is important to note that these measurements will include acceleration due to motion of the compass platform as well as the acceleration due to gravity.
Pitch and Roll information is provided both graphically and numerically to indicate the current orientation of the platform. The overall tilt of the platform is calculated by the software development kit using the pitch and roll information. The overall platform tilt is direction independent and indicates the tilt of the platform from vertical expressed in degrees. Platform tilt values greater than 90 degrees indicate the platform is inverted.

The data filter consists of a simple lowpass IIR filter applied to the heading, pitch, and roll data. The amount of filtering can be adjusted by changing the filtering value. Low values provide less filtering. Higher values will make the compass less responsive providing more stable heading, pitch, and roll. Acceptable filter values are in the range 1 to 65535 (SP3002D and SP3003D). The SP3004D allows a filter value of 0 to disable the dynamic filtering used for motion compensation.

The **Temperature** provides a measure of the compass temperature. This measurement provides an indication as to the ambient temperature by measuring the die temperature of the compass microcontroller.

![Digital Compass Input/Output](image)

FIGURE 12 - VIEW INPUT/OUTPUT DISPLAY

The analog inputs and digital inputs/outputs can be viewed by selecting the “View/Input/Outputs” menu item.

Analog input channels can be monitored, one at a time, by selecting the desired input channel in the **ANALOG IN** box. The displayed data corresponds to the selected input digitized to 12-bits (0V = 0, 3.3V = 4096).
The **DIGITAL INPUT** shows the current logic state of DIGITAL0 through DIGITAL7. If the selected digital line is configured as an output channel (see **DIGITAL DIR**), then the current state of **DIGITAL OUT** will determine the input logic state. Data is displayed as binary with the most significant bit corresponding to DIGITAL7 and the least significant bit corresponding to DIGITAL0.

The **DIGITAL OUTPUT** sets the logic state of all digital channels that are defined as outputs (see **DIGITAL DIR**). Data is displayed as binary with the most significant bit corresponding to DIGITAL7 and the least significant bit corresponding to DIGITAL0.

The **DIGITAL DIR** sets the input/output direction for each digital channel (DIGITAL0 through DIGITAL7). If a digital channel is set to logic 1, that channel is configured as an output. Likewise, logic 0 will configure the corresponding channel to be an input. The default state is all inputs at powerup. Data is displayed as binary with the most significant bit corresponding to DIGITAL7 and the least significant bit corresponding to DIGITAL0.
COCKPIT DISPLAY MODE

The development kit software has a display mode that simulates an aircraft cockpit. To enter the cockpit display mode, select the “View/Cockpit Display” menu item.

The display will show an artificial horizon gauge, a compass gauge, a roll indicator, a pitch indicator and a yaw indicator as depicted in Figure 14. The artificial horizon gauge roll axis is black and encircles the gauge. It is read via the black triangular pointer. The artificial horizon gauge pitch axis is yellow and is read at the center of the gauge. The artificial horizon gauge yaw axis is green and is also read at the center of the gauge. The following table lists the user commands that are available in cockpit display mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL-H</td>
<td>Toggle the artificial horizon gauge display mode to “heads up” (Figure 15) and back.</td>
</tr>
<tr>
<td>CTRL-S</td>
<td>Scale the artificial horizon gauge pitch and yaw axes. The allowable range is 30 to 90 degrees and represents the distance from the center of the gauge to the bezel (gauge mode) or the distance from the center of the gauge to a corner of the gauge (heads up mode). See Figure 13.</td>
</tr>
<tr>
<td>ESC or</td>
<td>Return to the default development kit software display mode.</td>
</tr>
<tr>
<td>CTRL-D or F10</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 13 – DISPLAY RANGE ENTRY DIALOG
FIGURE 14 - VIEW COCKPIT DISPLAY
FIGURE 15 – HEADS UP COCKPIT DISPLAY
DEVELOPMENT KIT PCB INTERFACE

The development kit interface PCB includes four (4) 0.125 diameter through holes for mounting the PCB. A standard DB-9 female connector is used for interfacing with standard 9-pin serial communication cables.

FIGURE 16 – PCB MECHANICAL OUTLINE
MAGNETIC MODEL SOFTWARE UPDATES

The digital compass uses a spherical harmonic model to calculate the magnetic variance. This variance is then used to adjust the magnetic heading to indicate a true north heading. In order to retain accuracy, the magnetic model must be updated every five years. A software program is available on the supplied CD that will assist in downloading new coefficients into the digital compass. This only affects the calculation of true heading and does not affect the magnetic heading accuracy. Next updates must be downloaded and installed in January of 2010.

SOFTWARE INSTALLATION

Insert the CD into a drive. Open the Sparton Compass Magnetic Update folder and run setup.exe. Software will be installed onto the host system by following the on screen instructions. Future updates can be obtained from the following Sparton website: http://www.thedigitalcompass.com.

HARDWARE SETUP

Mate the digital compass with the interface board provided in the kit as shown in Figure 17. North marking on bottom of the compass should match north marking on the interface board. Connect the supplied serial cable to the compass interface and any spare COM port of the host computer (COM1 – COM4). The compass can also be updated in the application as long as the RS232 communication is available and the compass is powered.

CAUTION:
The Digital Compass is an electrostatic sensitive device. Observe proper ESD precautions to avoid permanent damage caused by static discharge.
WARNING: Make sure the compass is mated correctly to the interface board. Misalignment of the pins can cause serious electrical damage to the compass. Sparton’s warranty does not cover faulty user hardware setup.
SOFTWARE OPERATION

With the compass and interface board mated, use the supplied serial cable to connect the interface board to COM1 of the computer. Plug in the DC converter wall adapter and run Sparton Compass Magnetic Update from the Windows Start menu located under Start/Programs/Sparton Compass Magnetic Update. The update program will first connect to the compass. The software automatically detects the proper communication port (COM1 through COM32) as well as the baud rate (1200 to 115200 baud).

![Connecting to Compass](image)

FIGURE 18 - COMMUNICATION PORT SELECTION
With the compass connected and program running, the coefficient file selection screen will be displayed (See Figure 19). Browse to the coefficient file if downloaded from the Sparton website or go to the Sparton Update folder to select WMM.COF for default coefficients (used to model 2005.0 to 2010.0 date range). Once the file is selected, press the Load button.

FIGURE 19 – COEFFICIENT FILE SELECTION
Once the communication port has been selected, the coefficient file will begin downloading into the digital compass. A progress bar is displayed to show the status of the download (see Figure 20). When the progress bar reaches 100%, the download is complete.

![Sparton Compass Magnetic Variance Update](image)

FIGURE 20 – UPDATE PROGRESS BAR

After the coefficients have downloaded, the update software will verify that the coefficients have been properly transferred. During this time, a verification message will be displayed (see Figure 21).

![Sparton Digital Compass Magnetic Update](image)

FIGURE 21 – UPDATE PROGRESS BAR
If the coefficient download passes the verification test, a message will be displayed indicating that the download was successful (see Figure 22).

![Sparton Digital Compass Magnetic Update]

FIGURE 22 – DOWNLOAD SUCCESSFUL

If the download was unsuccessful, a message will be displayed (see Figure 23). If this occurs, check the hardware connections to the compass and insure that the compass is powered. Make sure the download software file selection has a .COF extension and that the correct communication port is being used.

![Sparton Digital Compass Magnetic Update]

FIGURE 23 – DOWNLOAD UNSUCCESSFUL

IN ORDER TO RETAIN ACCURACY, THE MAGNETIC MODEL MUST BE UPDATED EVERY FIVE YEARS. FUTURE UPDATES CAN BE OBTAINED FROM THE SPARTON COMPASS WEBSITE AT http://www.thedigitalcompass.com. THIS UPDATE ONLY AFFECTS THE CALCULATION OF TRUE HEADING AND DOES NOT AFFECT THE MAGNETIC HEADING ACCURACY.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>ORDERING PART NUMBER</th>
<th>UNIT OF MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP3002D Digital Compass</td>
<td>SP3002D</td>
<td>EACH</td>
</tr>
<tr>
<td>SP3002D Digital Compass (RoHS)</td>
<td>SP3002DR</td>
<td>EACH</td>
</tr>
<tr>
<td>SP3003D Digital Compass (Discontinued)</td>
<td>N/A - replaced by SP3004D</td>
<td>EACH</td>
</tr>
<tr>
<td>SP3003D Digital Compass (RoHS) (Discontinued)</td>
<td>N/A - replaced by SP3004DR</td>
<td>EACH</td>
</tr>
<tr>
<td>SP3004D Digital Compass</td>
<td>SP3004D</td>
<td>EACH</td>
</tr>
<tr>
<td>SP3004D Digital Compass (RoHS)</td>
<td>SP3004DR</td>
<td>EACH</td>
</tr>
<tr>
<td>Development Kit w/ Software</td>
<td>SP3002D-4D KIT</td>
<td>EACH</td>
</tr>
</tbody>
</table>

The Sparton Digital Compass is delivered as a potted module ready to meet the requirements of your design application and environment. The Sparton Digital Compass can be integrated into any system using a UART or SPI interface. Sparton also offers product integration, Design for Manufacturing (DFM), Design for Assembly (DFA) and production services.

For more information please visit www.thedigitalcompass.com, or contact the Business Development professionals at Sparton Government Systems in DeLeon Springs, FL at 386-985-4631. For Technical Support please email your questions to DigitalCompassTechSupport.com

To place an order or obtain pricing information please call 386-985-4631, or order online at www.thedigitalcompass.com.

SPARTON RESERVES THE RIGHT TO MAKE CHANGES TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SPARTON DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS NOR THE RIGHTS OF OTHERS.
WARRANTY

a. Sparton warrants to Customer, and to no other legal entity, that, for a period of twelve (12) months from the date of purchase: the Product delivered to Customer will be (i) free from defects in material and workmanship and (ii) free and clear of all liens and encumbrances.

b. Sparton shall have no responsibility or obligation to Customer for warranty claims related to: Product failures caused by incompatibility with other systems or devices; Products damaged by misuse, accident, neglect, or improper alterations or repairs, including the use of non-conforming parts; or the failure of the Product to perform or operate other than in conformity with Sparton's technical descriptions.

c. In the event that any Product manufactured by Sparton is not in conformity with the foregoing warranties, Sparton shall, at Sparton's option, either credit Customer for any such nonconformity [not to exceed the purchase price paid by Customer for such Product(s)], or, at Sparton's expense, replace, repair or correct such Product(s). The foregoing constitutes Customer's sole remedies against Sparton for breach of warranty claims. If Sparton elects to repair any such Products, it will use only new parts. Any Products submitted pursuant to the warranty provisions of this Agreement which passes the inspection/acceptance tests, will be returned to Customer as No Defect Found (NDF) and Sparton will invoice Customer a per lot testing and handling charge, as quoted, plus return shipping charges. Customer will be entitled to a remedy hereunder only if it notifies Sparton in writing of the alleged breach of warranty no later than thirty (30) calendar days from the expiration of the warranty or within thirty (30) calendar days of the date of discovery, whichever first occurs. Sparton will pay freight charges for returns.

d. THE WARRANTIES LISTED ABOVE ARE IN LIEU OF, AND SPARTON EXPRESSLY DISCLAIMS AND CUSTOMER WAIVES ALL OTHER REPRESENTATIONS AND WARRANTIES, EXPRESSED OR IMPLIED, STATUTORY OR ARISING BY COURSE OF DEALING OR PERFORMANCE, CUSTOM, USAGE IN THE TRADE OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF NONINFRINGEMENT AND ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL SPARTON BE LIABLE TO CUSTOMER OR ANY OTHER LEGAL ENTITY FOR DAMAGES, IN EXCESS OF THE PURCHASE PRICE OF THE PRODUCTS, OR FOR ANY LOSS OF USE, INCONVENIENCE, LOST PROFITS OR ANY OTHER SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, WHETHER ARISING OUT OF WARRANTY OR OTHER CONTRACT, NEGLIGENCE CLAIM.