Spartacus Software
QuickStart Guide

11/10/16

Applicable to Sparton Inertial Sensors
REVISION HISTORY:

<table>
<thead>
<tr>
<th>DATE</th>
<th>REV</th>
<th>DESCRIPTION OF CHANGE</th>
<th>INITIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/01/2016</td>
<td>A</td>
<td>Original</td>
<td>Nathan</td>
</tr>
<tr>
<td>11/4/2016</td>
<td>B</td>
<td>Reformatted the document and fixed the example for infield calibration.</td>
<td>RSW</td>
</tr>
</tbody>
</table>
Table of Contents

1 Spartan Quick Start Guide Overview .. 4
1.1 Spartan System Setup .. 4
1.2 Guided Tour of the Spartanus Data Views ... 5
 1.2.1 Admin Tab .. 5
 1.2.2 Sensor Tab .. 7
 1.2.3 Euler Tab .. 8
 1.2.4 Euler Plot Tab .. 9
 1.2.5 Accelerometer Plot Tab .. 10
 1.2.6 Gyro Plot Tab ... 11
 1.2.7 Magnetometer Plot Tab .. 12
 1.2.8 3D View Tab ... 13
 1.2.9 Attitude Indicator View Tab ... 14
1.3 3D Calibration: Non AHRS-M1/M2 .. 16
1.4 3D Calibration: AHRS-M1/M2 ... 20
The content of this document is proprietary. No part of this document shall be reproduced nor shall any use or disclosure of the information contained herein be made without written authorization from Sparton Electronics.

1 Spartacus Quick Start Guide Overview

The Spartacus GUI provides a simple way to set up and evaluate Sparton’s line of navigation sensor modules, including:

- **DC-4E**: Navigation Sensor
- **GEDC-6E**: Gyro-Enhanced Navigation Sensor
- **AHRS-8**: Attitude Heading Reference System
- **IMU-10**: Inertial Measurement Unit
- **AHRS-M(x)**: Gyro-Enhanced Navigation Sensor

1.1 Spartacus System Setup

1. Ensure that all device interfaces are connected properly and the NDS-1/NDS-2 adapter board is connected to the PC.
2. **If running from ZIP**: Unzip the spartacus_v*.zip to a folder of your preference. Spartacus can be run directly from this folder, so installation in the traditional sense is not required. Specifically, administrator rights are not required to use this application. **If installing via EXE**: Run spartacus_v_win_installer.exe. The setup wizard will walk you through the installation process. A folder will be created in whichever location you choose.
3. Open the spartacus.exe file that is located inside of the folder that was just created.
4. After the application opens, click on Spartacus Settings -> Serial Port Settings
5. You will be presented with a serial connection dialog (see Figure 1).

![Serial Connection Dialog](image)

Figure 1: Serial Connection Dialog
6. Ensure that the device’s COM port is selected and click “OK.”
 a. The device’s COM port may be identified using the Device Manager

1.2 Guided Tour of the Spartacus Data Views

Not all tabs are available on all compass models. Please allow one second between tab changes to allow the device to be updated with the tab’s data values.

1.2.1 Admin Tab

The Admin tab allows users to evaluate and manipulate the device VIDs using the Remote Function Select (RFS) Controls or Basic Terminal Window. RFS is a binary interface protocol used by Sparton’s navigational and inertial sensors to communicate with hosts.

![Figure 2: Admin Tab](image-url)
This tab uses static control buttons to navigate the device’s Variable IDentifiers (VID) while getting and setting values. It also holds the serial terminal window from which the user can communicate with the device using supported text commands. The control buttons can be seen in Figure 3 and are explained in Table 1.

![RFS Controls](image)

Figure 3: Admin Tab Controls

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Get</td>
<td>Fetches current data for selected VID.</td>
</tr>
<tr>
<td>2</td>
<td>Get Prev</td>
<td>Decrements VID and fetches its current data.</td>
</tr>
<tr>
<td>3</td>
<td>Get Next</td>
<td>Increments VID and fetches its current data.</td>
</tr>
<tr>
<td>4</td>
<td>Show</td>
<td>Shows information for selected VID.</td>
</tr>
<tr>
<td>5</td>
<td>Construct</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Value</td>
<td>Fetches current value for of selected VID.</td>
</tr>
<tr>
<td>7</td>
<td>Prev Value</td>
<td>Decrements VID and fetches current value.</td>
</tr>
<tr>
<td>8</td>
<td>Next Value</td>
<td>Increments VID and fetches current value.</td>
</tr>
<tr>
<td>9</td>
<td>Set</td>
<td>Sets data for selected VID within device memory.</td>
</tr>
</tbody>
</table>

The terminal window can also be used to communicate with the connected device. There are three methods which a user can input commands into the terminal window.

- Type commands directly into the terminal window. The commands must be entered a single line at a time, followed by enter.
- Commands copied from an outside program can be pasted into the terminal window by selecting right-click → paste within the terminal window. Each line will execute automatically.
- A text file can be dragged and dropped into the terminal window. Each line will execute automatically.
1.2.2 Sensor Tab
This tab shows some of the raw and processed sensor values in numerical format.

![Sensor Tab](image.png)

Figure 4: Sensor Tab
1.2.3 **Euler Tab**

This tab shows a standard compass rose along with pitch and roll. In addition, the two variables Mag Error (VID: “magFieldCalErr” for AHRS-M1/M2, “magErr” for all others) and Heading Error (VID: “yawErrEst” for AHRS-M1/M2, “magErr2” for all others) are displayed.

![Euler Tab Diagram](image)

Figure 5: Euler Tab
1.2.4 Euler Plot Tab

This tab displays a real-time plot of pitch, roll, and yaw in degrees. NOTE: All plots can be automatically scaled by selecting View->Autoscale. Switching tabs sets ranges to their default values.

![Euler Plot Tab](image)

Figure 6: Euler Plot Tab
1.2.5 **Accelerometer Plot Tab**

This tab displays a real-time plot of the XYZ accelerometer output in mg (for AHRS-8 and below) or \(m/s^2 \) (for IMU-10 and up).

![Accelerometer Plot Tab](image)

Figure 7: Accelerometer Plot Tab
1.2.6 **Gyro Plot Tab**

This tab displays a real-time plot of the XYZ gyro output in degrees per second.

![Gyro Plot Tab](image)

Figure 8: Gyro Plot Tab
1.2.7 Magnetometer Plot Tab

This tab displays the XYZ magnetometer output is milliGauss.

Figure 9: Magnetometer Plot Tab
1.2.8 3D View Tab

This tab gives a spatial representation of the device’s orientation. This tab utilizes the device’s quaternion output rather than Euler angles. Side 1 corresponds to the north face of the device.

Figure 10: Spatial Representation of Device Orientation
1.2.9 **Attitude Indicator View Tab**

This tab gives a spatial representation of the device’s orientation. This tab utilizes the device’s Euler angles. There are two views: Cockpit View and Ship’s Helm View.

![Figure 11 - Attitude Indicator View Tab - Cockpit View](image-url)
Figure 12 - Attitude Indicator View Tab - Ship's Helm View
1.3 3D Calibration: Non AHRS-M1/M2

In order to begin the 3D calibration process, select Devices Settings → In-Field Calibration → 3D Calibrate.

You will be presented with the calibration quality screen if the device’s firmware supports the quality variables (older firmware versions do not) (See Figure 13).

![Figure 13: In-Field Calibration Quality](image)

- The In-Field Calibration Error (VID: magFieldCalErr) is the device’s current estimated heading error in degrees (this value should be low).
- The In-Field Calibration Point Distribution (VID: calPointDistribution) is a measure of how evenly distributed the last calibration point selection was on a spherical plane (this value should be high).
- The total magnetic point quality (VID: magPointQF) is a measure of how diverse the magnetometers readings were for the last calibration point selection (this value should be high).
Upon selecting “Yes,” the In-Field Calibration dialog appears (See Figure 14). Utilize the “Capture Point” button to begin capturing calibration points. As more points are captured, the “Possible Mag Point Quality” indicator (VID: possibleMagPointQF) can be used to maximize the calibration point magnetic diversity. Maximizing this indicator, by rotating the device in between capturing each calibration point, is essential to acquiring a superior in-field calibration.

![In-Field Calibration Dialog](image)

Figure 14: In-Field Calibration Dialog

It is recommended that 12 points are captured for the best calibration result. However, the process can be ended after 4 points with a degraded result.
After the final point is captured (or the process was ended before 12 points), the Calibration dialog will switch from the capture view to the convergence view (See Figure 12).

![In-field Calibration](image)

Figure 15: Convergence View

The Mag Error (VID: magErr) should decrease within the first few seconds (older firmware versions may take a few minutes) and stabilize. After the Mag Error has ceased dropping, the “End Cal” button commits the in-field calibration to the device.
The new calibration quality values will be displayed (See Figure 16) after the calibration process.

![In-Field Calibration Quality](image)

Figure 16: In-Field Calibration Quality After Completed In-Field Calibration

NOTE: If the original factory calibration is desired over the in-field calibration, select Device Settings → In-Field Calibration → Restore Factory Cal.
1.4 3D Calibration: AHRS-M1/M2

In order to begin the calibration process using the AHRS-M1/M2, select Device Settings → In-Field Calibration → Calibrate AHRS-M1/M2 (Figure 17).

Figure 17: Opening AHRS-M1/M2 Calibration Dialog
You will be presented with the AHRS-M1/M2 Calibration Controls dialog which floats over the Spartacus window and shares priority. The “Yaw Error Estimate” and Absolute Yaw Error” line edit boxes should begin updating in real time. The dialog can be seen in Figure 18.

![AHRS-M1/M2 Calibration Controls](image)

Figure 18: AHRS-M1/M2 Calibration Controls

The VID values displayed in the AHRS-M1/M2 Calibration Control dialog are

- **Active Buffer Points**: The total number of captured calibration points. Four or more are needed to begin the calibration process of the AHRS-M1/M2.
- **MSE (Error Convergence)**: Monitors calibration process’ error convergence. Four or more active buffer points must have been captured before this is calculated. The closer it is to zero, the greater the accuracy.
- **Yaw Error Estimate (°)**: The estimated heading error of the AHRS-M1/M2 (in degrees).
- **Absolute Yaw Error**: Error difference between the measured yaw and the estimated yaw.

The controls displayed in the AHRS-M1/M2 Calibration Control dialog are

- **Manual Mag Measure**: Manually captures a calibration point.
- **Flush Buffers**: Clears all captured calibration points.
- **Clear PointCal**: Clears the manual point calibration buffer.
- **Clear FieldCal**: Defaults calibration to manual values.
- **Auto Calibrate**: Starts/Stops AdaptCal.
- **Manual Calibrate**: Starts/Stops manual field calibration.
- **AdaptNav**: Toggles AdaptNav III.
- **Mag Aiding**: Starts/Stops “Gyro-Only” Mode. (This includes both accels and gyros)
There are two methods to calibrating the AHRS-M1/M2: Point Calibration and Field Calibration:

Manual Calibration: Involves obtaining magnetic measurements by manually manipulating the AHRS-M1/M2 into different positions and clicking the “Manual Mag Measure” button. The idea is to obtain as many magnetically diverse points as possible (12 is recommended). Once the user has obtained at least four points, the MSE will begin to decrease. The closer the MSE is to zero, the greater the accuracy of the yaw measurements. An example of orientations for manual measurements can be seen in Error! Reference source not found.

<table>
<thead>
<tr>
<th>Point</th>
<th>Pitch(°)</th>
<th>Roll(°)</th>
<th>Yaw(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>180</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>270</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>45</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>7</td>
<td>45</td>
<td>0</td>
<td>210</td>
</tr>
<tr>
<td>8</td>
<td>45</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>9</td>
<td>-45</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>-45</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>11</td>
<td>-45</td>
<td>0</td>
<td>240</td>
</tr>
<tr>
<td>12</td>
<td>-45</td>
<td>0</td>
<td>330</td>
</tr>
</tbody>
</table>

Table 2 – Example of Manual Measurement Points

- **Field Calibration:** Involves obtaining magnetic measurements by manually manipulating the AHRS-M1/M2 into different positions while AdaptCal is enabled. The AHRS-M1/M2 will gather calibration points adaptively as its position is changed. While precision is not a factor when manipulating the AHRS-M1/M2, it is still recommended to aim for points similar to those listed in Error! Reference source not found.. Once a minimum of four points have been captured, the MSE will begin to decrease. The closer MSE is to zero, the greater the accuracy of the yaw measurements. The recommended number of captured points is 12.